Deep Feature Learning for EEG Recordings
نویسندگان
چکیده
We introduce and compare several strategies for learning discriminative features from electroencephalography (EEG) recordings using deep learning techniques. EEG data are generally only available in small quantities, they are highdimensional with a poor signal-to-noise ratio, and there is considerable variability between individual subjects and recording sessions. Our proposed techniques specifically address these challenges for feature learning. Cross-trial encoding forces auto-encoders to focus on features that are stable across trials. Similarityconstraint encoders learn features that allow to distinguish between classes by demanding that two trials from the same class are more similar to each other than to trials from other classes. This tuple-based training approach is especially suitable for small datasets. Hydra-nets allow for separate processing pathways adapting to subsets of a dataset and thus combine the advantages of individual feature learning (better adaptation of early, low-level processing) with group model training (better generalization of higher-level processing in deeper layers). This way, models can, for instance, adapt to each subject individually to compensate for differences in spatial patterns due to anatomical differences or variance in electrode positions. The different techniques are evaluated using the publicly available OpenMIIR dataset of EEG recordings taken while participants listened to and imagined music.
منابع مشابه
A hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine
Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...
متن کاملMental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals
Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...
متن کاملIntroduction of low to high frequencies bispectrum rate feature for deep sleep detection from awakening by electroencephalogram
Background: Accurate detection of deep sleep (Due to the low frequency of the brain signal in this part of sleep, it is also called slow-wave sleep) from awakening increases the sleep staging accuracy as an important factor in medicine. Depending on the time and cost of manually determining the depth of sleep, we can automatically determine the depth of sleep by electroencephalogram (EEG) signa...
متن کاملEEG Based Emotion Identification Using Unsupervised Deep Feature Learning
Capturing user’s emotional state is an emerging way for implicit relevance feedback in information retrieval (IR). Recently, EEGbased emotion recognition has drawn increasing attention. However, a key challenge is effective learning of useful features from EEG signals. In this paper, we present our on-going work on using Deep Belief Network (DBN) to automatically extract highlevel features from...
متن کاملDeep Learning in the EEG Diagnosis of Alzheimer's Disease
EEG (electroencephalogram) has a lot of advantages compared to other methods in the analysis of Alzheimer’s disease such as diagnosing Alzheimer’s disease in an early stage. Traditional EEG analysis method needs a lot of artificial works such as calculating coherence between different pair of electrodes. In our work we applied deep learning network in the analysis of EEG data of Alzheimer’s dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1511.04306 شماره
صفحات -
تاریخ انتشار 2015